Villegas-Amtmann, S., L. K. Schwarz, G. Gailey, O. Sychenko, and D. P. Costa
Western gray whales (WGW) Eschrichtius robustus are considered one of the world’s most endangered baleen whale populations. Development of oil and gas fields in northeastern Sakhalin, Russia, is a concern, because they overlap with WGW feeding grounds. Some WGW migrate ~10 000 km from feeding grounds around Sakhalin Island (Russia), to breeding grounds in Baja California (BajaC; Mexico) and possibly ~6000 km to the South China Sea (China). We developed a WGW female bioenergetics model to examine potential consequences of energy lost from foraging cessation caused by anthropogenic disturbance, and compared it to eastern gray whales (EGW). Energy loss was then linked to potential reductions in reproduction and survival. Mean total energy requirements were 11 and 15% greater for WGW breeding in BajaC and China, respectively, compared to EGW, due to longer migration distance (25%) to BajaC and higher metabolic rates at foraging grounds. However, this difference is minimal for EGW that use the northern extent of their foraging range. On average, WGW breeding in BajaC and China need 9 and 17% more energy for survival than EGW. Our model predicts that WGW mortality would likely occur at 38 to 40% annual energetic loss. Long-term yearly energy loss of 30% would result in adult female mortality the first year, followed by lower reproductive rates of survivors. Our model suggests that energy losses of >30% caused by disturbance should be considered a threshold for concern for this Critically Endangered population.
Link To Publication
Some links to publications are behind pay-walls and hence might not be readily accessible to the public