Independent estimate of grey seal population size: 2008 and 2014.

Open Access Journal Article 2016

Scientific Advice on Matters Related to the Management of Seal Populations

1. Grey seals (Halichoerus grypus) were the first mammals to be protected by an Act of Parliament in the UK and are currently protected under UK, Scottish, and EU conservation legislation. Reporting requirements under each of these statutes requires accurate and timely population estimates. Monitoring is principally conducted by aerial surveys of the breeding colonies; these are used to produce estimates of annual pup production. Translating these data to estimates of adult population size requires information about demographic parameters such as fecundity and sex ratio. 2. An age-structured population dynamics model is presented, which includes density dependence in pup survival, with separate carrying capacities in each of the four breeding regions considered (North Sea, Inner Hebrides, Outer Hebrides, and Orkney). This model is embedded within a Bayesian state–space modelling framework, allowing the population model to be linked to available data and the use of informative prior distributions on demographic parameters. A computer-intensive fitting algorithm is presented based on particle filtering methods. 3. The model is fitted to region-level pup production estimates from 1984 to 2010 and an independent estimate of adult population size, derived from aerial surveys of hauled-out seals in 2008. The fitted model is used to estimate total population size from 1984 to 2010. 4. The population in the North Sea region has increased at a near-constant rate; growth in the other three regions began to slow in the mid-1990s and these populations appear to have reached carrying capacity. The total population size of seals aged 1 year or older in 2010 was estimated to be 116 100 (95% CI 98 400–138 600), an increase of <1% on the previous year. 5. The modelling and fitting methods are widely applicable to other wildlife populations where diverse sources of information are available and inference is required for the underlying population dynamics.

Link To Publication

Similar Research

Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure

Pay-walled Journal Article 2004

Canadian Journal of Fisheries and Aquatic Sciences

Anthropogenic sound is a potential stressor for marine mammals that may affect health, as has been demonstrated in other mammals. Therefore, we have initiated investigations on...
Read More

Influences of man-made noise and other human actions on cetacean behaviour

Pay-walled Journal Article 1995

Marine and Freshwater Behaviour and Physiology

Behavioral reactions of cetaceans to man-made noises are highly variable, ranging from attraction (e.g. bow riding by dolphins) or no response through short-term changes in behaviour...
Read More

International Regulation Of Transboundary Pollutants: The Emerging Challenge Of Ocean Noise

Open Access Journal Article 2001

Ocena and Coastal Law Journal

Transboundary pollution law poses the challenge of addressing environmental problems irrespective of boundaries in an international legal system that values, above all, territorial sovereignty of individual...
Read More

A Brief Review of Anthropogenic Sound in the Oceans

Open Access Journal Article 2007

International Journal of Comparative Psychology

Sound in the oceans is generated by a variety of natural sources, such as breaking waves, rain, and marine animals, as well as a variety of...
Read More

Effect of anthropogenic low-frequency noise on the foraging ecology of Balaenoptera whales

Pay-walled Journal Article 2006

Animal Conservation

The human contribution to ambient noise in the ocean has increased over the past 50 years, and is dominated by low-frequency (LF) sound (frequencies <1000 Hz)...
Read More

Response and Responsibility: Regulating Noise Pollution in the Marine Environment

Pay-walled Journal Article 2007

Journal of International Wildlife Law and Policy

The ocean is becoming an increasingly noisy environment. With a rise in com-mercial shipping, resource extraction activities, and military-related activities,the underwater ocean environment is a virtual...
Read More

Determination of environmental sensitivity of acoustic propagation on continental shelves using an equivalent fluid parabolic equation model

Pay-walled Journal Article 1995

The Journal of the Acoustical Society of America

A coupled environment and acoustic prediction system was developed to evaluate the sensitivity of acoustic propagation on the continental shelf to water column and sediment properties....
Read More

Effects of underwater noise on auditory sensitivity of a cyprinid fish

Pay-walled Journal Article 2001

Hearing Research

The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise...
Read More

Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system

Pay-walled Journal Article 2005

Hearing Research

Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental...
Read More

The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus

Pay-walled Journal Article 2002

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally...
Read More