In-air and Underwater Hearing of Diving Birds

Open Access Report 2014

Dissertation. University of Maryland

In-air and underwater auditory thresholds were measured in diving bird species, using behavioral and electrophysiological techniques. In the first set of experiments, the auditory brainstem response (ABR) was used to compare in-air auditory sensitivity across ten species of diving birds. The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz. The audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds were observed in the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). In the second set of experiments, both the ABR and psychoacoustics were used to measure in-air auditory sensitivity in one species of diving duck, the lesser scaup. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was smallest at the highest frequency tested using both methods (5,700 Hz) and greatest at 1,000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. In the third set of experiments, psychoacoustic techniques were used to measure in-air and underwater sensitivity in one species of sea duck, the long-tailed duck (Clangula hyemalis). Underwater auditory thresholds were measured for the first time in any diving bird species. Long-tailed duck in-air sensitivity was greatest at 2000 Hz. The ducks responded reliably to sound stimuli underwater, and correctly responded to high intensity stimuli (greater than 117 dB re 1 µPa) with over 80% accuracy at frequencies between 0.5 kHz and 2.86 kHz. The large differences in diving behavior and physiology across bird orders suggest these studies should be extended to other diving bird species in order to understand how well birds hear underwater. These first measurements highlight the need for further investigation into underwater hearing in diving birds, in order to understand underwater hearing mechanisms and begin to develop hypotheses as to how the introduction of man-made noise sources into the aquatic environment may impact these species.

Link To Publication

Similar Research

Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure

Pay-walled Journal Article 2004

Canadian Journal of Fisheries and Aquatic Sciences

Anthropogenic sound is a potential stressor for marine mammals that may affect health, as has been demonstrated in other mammals. Therefore, we have initiated investigations on...
Read More

Response and Responsibility: Regulating Noise Pollution in the Marine Environment

Pay-walled Journal Article 2007

Journal of International Wildlife Law and Policy

The ocean is becoming an increasingly noisy environment. With a rise in com-mercial shipping, resource extraction activities, and military-related activities,the underwater ocean environment is a virtual...
Read More

Influences of man-made noise and other human actions on cetacean behaviour

Pay-walled Journal Article 1995

Marine and Freshwater Behaviour and Physiology

Behavioral reactions of cetaceans to man-made noises are highly variable, ranging from attraction (e.g. bow riding by dolphins) or no response through short-term changes in behaviour...
Read More

International Regulation Of Transboundary Pollutants: The Emerging Challenge Of Ocean Noise

Open Access Journal Article 2001

Ocena and Coastal Law Journal

Transboundary pollution law poses the challenge of addressing environmental problems irrespective of boundaries in an international legal system that values, above all, territorial sovereignty of individual...
Read More

A Brief Review of Anthropogenic Sound in the Oceans

Open Access Journal Article 2007

International Journal of Comparative Psychology

Sound in the oceans is generated by a variety of natural sources, such as breaking waves, rain, and marine animals, as well as a variety of...
Read More

Effect of anthropogenic low-frequency noise on the foraging ecology of Balaenoptera whales

Pay-walled Journal Article 2006

Animal Conservation

The human contribution to ambient noise in the ocean has increased over the past 50 years, and is dominated by low-frequency (LF) sound (frequencies <1000 Hz)...
Read More

Determination of environmental sensitivity of acoustic propagation on continental shelves using an equivalent fluid parabolic equation model

Pay-walled Journal Article 1995

The Journal of the Acoustical Society of America

A coupled environment and acoustic prediction system was developed to evaluate the sensitivity of acoustic propagation on the continental shelf to water column and sediment properties....
Read More

Effects of underwater noise on auditory sensitivity of a cyprinid fish

Pay-walled Journal Article 2001

Hearing Research

The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise...
Read More

Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system

Pay-walled Journal Article 2005

Hearing Research

Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental...
Read More

The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus

Pay-walled Journal Article 2002

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally...
Read More