Estimating animal population density using passive acoustics

Open Access Peer Reviewed Publication 2013

Biological Reviews

Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here.

Link To Publication

Similar Research

Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure

Pay-walled Journal Article 2004

Canadian Journal of Fisheries and Aquatic Sciences

Anthropogenic sound is a potential stressor for marine mammals that may affect health, as has been demonstrated in other mammals. Therefore, we have initiated investigations on...
Read More

Response and Responsibility: Regulating Noise Pollution in the Marine Environment

Pay-walled Journal Article 2007

Journal of International Wildlife Law and Policy

The ocean is becoming an increasingly noisy environment. With a rise in com-mercial shipping, resource extraction activities, and military-related activities,the underwater ocean environment is a virtual...
Read More

Influences of man-made noise and other human actions on cetacean behaviour

Pay-walled Journal Article 1995

Marine and Freshwater Behaviour and Physiology

Behavioral reactions of cetaceans to man-made noises are highly variable, ranging from attraction (e.g. bow riding by dolphins) or no response through short-term changes in behaviour...
Read More

International Regulation Of Transboundary Pollutants: The Emerging Challenge Of Ocean Noise

Open Access Journal Article 2001

Ocena and Coastal Law Journal

Transboundary pollution law poses the challenge of addressing environmental problems irrespective of boundaries in an international legal system that values, above all, territorial sovereignty of individual...
Read More

A Brief Review of Anthropogenic Sound in the Oceans

Open Access Journal Article 2007

International Journal of Comparative Psychology

Sound in the oceans is generated by a variety of natural sources, such as breaking waves, rain, and marine animals, as well as a variety of...
Read More

Effect of anthropogenic low-frequency noise on the foraging ecology of Balaenoptera whales

Pay-walled Journal Article 2006

Animal Conservation

The human contribution to ambient noise in the ocean has increased over the past 50 years, and is dominated by low-frequency (LF) sound (frequencies <1000 Hz)...
Read More

The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus

Pay-walled Journal Article 2002

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally...
Read More

Determination of environmental sensitivity of acoustic propagation on continental shelves using an equivalent fluid parabolic equation model

Pay-walled Journal Article 1995

The Journal of the Acoustical Society of America

A coupled environment and acoustic prediction system was developed to evaluate the sensitivity of acoustic propagation on the continental shelf to water column and sediment properties....
Read More

Effects of underwater noise on auditory sensitivity of a cyprinid fish

Pay-walled Journal Article 2001

Hearing Research

The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise...
Read More

Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system

Pay-walled Journal Article 2005

Hearing Research

Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental...
Read More