Development of a bioenergetic model for estimating energy requirements and prey biomass consumption of the bottlenose dolphin Tursiops truncatus

Pay-walled Peer Reviewed Publication 2017

Ecological Modelling

The bottlenose dolphin (Tursiops truncatus) is a common species in coastal temperate waters and the ideal candidate for developing a conceptual bioenergetic model given that sufficient information is available to parameterize key input variables. A bioenergetic model was developed to estimate annual energy requirements (MJ/year) and prey biomass consumption (t/year) based on model variations of Field Metabolic Rates (FMR) that included percent of body mass (FMRBodyMass), Kleiber’s scaling equation (FMRKleiber), and measured FMRs (FMRMeasured). Bioenergetic requirements were generated by incorporating the intrinsic uncertainty of input model variables based on assumed or data-driven assignments of sampling distributions. Gompertz growth functions were used to generate body lengths (cm) as a function of age, which once converted to body mass (kg), were used in all calculations. Annual bioenergetic estimates differed across model variations (FMRMeasured > FMRKleiber > FMRBody Mass) and were on average 22%–34% higher in female calves than in male calves, 3%–7% higher in subadult/immature females than in males, and 12%–18% higher in adult males than in non-lactating adult females. Average estimates were ∼72% and 31%–34% higher in lactating adult females compared to non-lactating adult females and adult males, respectively. Annual bioenergetic requirements for ≥2 year old dolphins normalized by body mass were FMRMeasured: 205 ± 29 MJ/kg/year and 34 ± 5 kg/kg/year, FMRKleiber: 151 ± 29 MJ/kg/year and 22 ± 5 kg/kg/year, and FMRBodyMass: 138 ± 38 MJ/kg/year and 20 ± 5 kg/kg/year. When applying the bioenergetic model to the US bottlenose dolphin stock with the largest dolphin abundance (n = 950), estimates of annual bioenergetic requirements were 2040–3050 MJ*104/year and 2900–5070 t/year. While the existing information provides the foundation to develop a bioenergetic model specific for bottlenose dolphins, improvements of this and related models require additional data on field measurements of metabolic rates, cost of lactation, caloric intake and metabolization efficiency. This bioenergetic model could be used to better understand the complex ecological and trophic interactions of bottlenose dolphins with their prey populations, to evaluate the role of disturbance on bioenergetic requirements, and to inform management and conservation efforts.

Link To Publication

Similar Research

Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure

Pay-walled Journal Article 2004

Canadian Journal of Fisheries and Aquatic Sciences

Anthropogenic sound is a potential stressor for marine mammals that may affect health, as has been demonstrated in other mammals. Therefore, we have initiated investigations on...
Read More

Response and Responsibility: Regulating Noise Pollution in the Marine Environment

Pay-walled Journal Article 2007

Journal of International Wildlife Law and Policy

The ocean is becoming an increasingly noisy environment. With a rise in com-mercial shipping, resource extraction activities, and military-related activities,the underwater ocean environment is a virtual...
Read More

Influences of man-made noise and other human actions on cetacean behaviour

Pay-walled Journal Article 1995

Marine and Freshwater Behaviour and Physiology

Behavioral reactions of cetaceans to man-made noises are highly variable, ranging from attraction (e.g. bow riding by dolphins) or no response through short-term changes in behaviour...
Read More

International Regulation Of Transboundary Pollutants: The Emerging Challenge Of Ocean Noise

Open Access Journal Article 2001

Ocena and Coastal Law Journal

Transboundary pollution law poses the challenge of addressing environmental problems irrespective of boundaries in an international legal system that values, above all, territorial sovereignty of individual...
Read More

A Brief Review of Anthropogenic Sound in the Oceans

Open Access Journal Article 2007

International Journal of Comparative Psychology

Sound in the oceans is generated by a variety of natural sources, such as breaking waves, rain, and marine animals, as well as a variety of...
Read More

Effect of anthropogenic low-frequency noise on the foraging ecology of Balaenoptera whales

Pay-walled Journal Article 2006

Animal Conservation

The human contribution to ambient noise in the ocean has increased over the past 50 years, and is dominated by low-frequency (LF) sound (frequencies <1000 Hz)...
Read More

Determination of environmental sensitivity of acoustic propagation on continental shelves using an equivalent fluid parabolic equation model

Pay-walled Journal Article 1995

The Journal of the Acoustical Society of America

A coupled environment and acoustic prediction system was developed to evaluate the sensitivity of acoustic propagation on the continental shelf to water column and sediment properties....
Read More

Effects of underwater noise on auditory sensitivity of a cyprinid fish

Pay-walled Journal Article 2001

Hearing Research

The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise...
Read More

Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system

Pay-walled Journal Article 2005

Hearing Research

Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental...
Read More

The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus

Pay-walled Journal Article 2002

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally...
Read More