Changes in vocal parameters with social context in humpback whales: considering the effect of bystanders

Open Access Peer Reviewed Publication 2016

Behavioural Ecology and Sociobiology

Many theories and communication models developed from terrestrial studies focus on a simple dyadic exchange between a sender and receiver. During social interactions, the “frequency code” hypothesis suggests that frequency characteristics of vocal signals can simultaneously encode for static signaler attributes (size or sex) and dynamic information, such as motivation or emotional state. However, the additional presence of a bystander may result in a change of signaling behavior if the costs and benefits associated with the presence of this bystander are different from that of a simple dyad. In this study, two common humpback whale social calls (“wops” and “grumbles”) were tested for differences related to group social behavior and the presence of bystanders. “Wop” parameters were stable with group social behavior, but were emitted at lower (14 dB) levels in the presence of a nearby singing whale compared to when a singing whale was not in the area. “Grumbles” were emitted at lower (30–39 Hz) fundamental frequencies in affiliative compared to non-affiliative groups and, in the presence of a nearby singing whale, were also emitted at lower (14 dB) levels. Vocal rates did not significantly change. The results suggest that, in humpbacks, the frequency in certain sound types relates to the social behavior of the vocalizing group, implying a frequency code system. The presence of a nearby audible bystander (a singing whale) had no effect on this frequency code, but by reducing their acoustic level, the signal-to-noise ratio at the singer would have been below 0, making it difficult for the singer to audibly detect the group.

Link To Publication

Similar Research

Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure

Pay-walled Journal Article 2004

Canadian Journal of Fisheries and Aquatic Sciences

Anthropogenic sound is a potential stressor for marine mammals that may affect health, as has been demonstrated in other mammals. Therefore, we have initiated investigations on...
Read More

A Brief Review of Anthropogenic Sound in the Oceans

Open Access Journal Article 2007

International Journal of Comparative Psychology

Sound in the oceans is generated by a variety of natural sources, such as breaking waves, rain, and marine animals, as well as a variety of...
Read More

Effect of anthropogenic low-frequency noise on the foraging ecology of Balaenoptera whales

Pay-walled Journal Article 2006

Animal Conservation

The human contribution to ambient noise in the ocean has increased over the past 50 years, and is dominated by low-frequency (LF) sound (frequencies <1000 Hz)...
Read More

Response and Responsibility: Regulating Noise Pollution in the Marine Environment

Pay-walled Journal Article 2007

Journal of International Wildlife Law and Policy

The ocean is becoming an increasingly noisy environment. With a rise in com-mercial shipping, resource extraction activities, and military-related activities,the underwater ocean environment is a virtual...
Read More

Influences of man-made noise and other human actions on cetacean behaviour

Pay-walled Journal Article 1995

Marine and Freshwater Behaviour and Physiology

Behavioral reactions of cetaceans to man-made noises are highly variable, ranging from attraction (e.g. bow riding by dolphins) or no response through short-term changes in behaviour...
Read More

International Regulation Of Transboundary Pollutants: The Emerging Challenge Of Ocean Noise

Open Access Journal Article 2001

Ocena and Coastal Law Journal

Transboundary pollution law poses the challenge of addressing environmental problems irrespective of boundaries in an international legal system that values, above all, territorial sovereignty of individual...
Read More

Effects of underwater noise on auditory sensitivity of a cyprinid fish

Pay-walled Journal Article 2001

Hearing Research

The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise...
Read More

Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system

Pay-walled Journal Article 2005

Hearing Research

Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental...
Read More

The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus

Pay-walled Journal Article 2002

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally...
Read More

Determination of environmental sensitivity of acoustic propagation on continental shelves using an equivalent fluid parabolic equation model

Pay-walled Journal Article 1995

The Journal of the Acoustical Society of America

A coupled environment and acoustic prediction system was developed to evaluate the sensitivity of acoustic propagation on the continental shelf to water column and sediment properties....
Read More