Underwater noise impairs social communication during aggressive and reproductive encounters

Pay-walled Peer Reviewed Publication 2020

Animal Behaviour

Human-generated noise pollution is of global concern, as designated by the World Health Organization (WHO, 2011, Burden of disease from environmental noise: Quantification of healthy life years lost in Europe. https://www.who.int/quantifying_ehimpacts/publications/e94888/en/). Increases in shipping, sonar use, pile driving, and more have all contributed to a rise in ambient underwater sound levels. Unfortunately, continuous low-intensity sounds, like shipping noise, are pervasive in shallow-shore environments where many social species live and correspond to the frequency ranges at which many fishes produce and detect acoustic stimuli. Noise has the potential to alter the sender’s production of the signal, mask the signal itself (if acoustic), or change the receiver’s physiology. We hypothesized that continuous tonal noise would impair social interactions and communication. To test this, we used highly social African cichlid fish, Astatotilapia burtoni, to examine inter- and intrasexual interactions that occurred in a control or noisy environment (pure tones of 100–2000 Hz). During reproductive interactions, we found that males changed the location of their courtship behaviours. Instead of producing courtship quivers (and associated sounds) immediately next to gravid females, males produced these behaviours inside their spawning shelter. This change in location decreases the likelihood of the female detecting it. Also detrimental to acoustic communication, we found that noise-exposed gravid females had lower hearing sensitivity at 100–200 Hz, a major component of male courtship sounds. In addition, males changed their visual displays during male–male territorial interactions such that they spent more time with their eyebar displayed, suggesting an increase in visual signalling. Together, these data indicate that noise may impact all three components of social communication: signal production, signal reception and the signal itself, and highlights a possible cross-modal impact of noise on visual signalling. Subtle changes to social behaviours and communication, rather than dramatic effects such as injury or mortality, are important to evaluating sublethal impacts of noise on reproductive success and species survival.

Link To Publication

Similar Research

Influences of man-made noise and other human actions on cetacean behaviour

Pay-walled Journal Article 1995

Marine and Freshwater Behaviour and Physiology

Behavioral reactions of cetaceans to man-made noises are highly variable, ranging from attraction (e.g. bow riding by dolphins) or no response through short-term changes in behaviour...
Read More

A Summary of Existing and Future Potential Treatments for Reducing Underwater Sounds from Oil and Gas Industry Activities

Pay-walled Conference 2007


This paper summarizes the efforts undertaken by the author to identify existing and future potential methods to reduce underwater sound levels created by nearly all oil...
Read More

Sounds from an oil production island in the Beaufort Sea in summer: Characteristics and contribution of vessels

Pay-walled Journal Article 2005

The Journal of the Acoustical Society of America

The objective of this study was to determine the levels, characteristics, and range dependence of underwater and in-air sounds produced during the open-water seasons of 2000–2003...
Read More

Ship noise and cortisol secretion in European freshwater fishes

Pay-walled Journal Article 2006

Biological Conservation

Underwater noise pollution is a growing problem in aquatic environments and as such may be a major source of stress for fish. In the present study,...
Read More

Criteria and Thresholds of U.S. Navy Acoustic and Explosive Effects Analysis.

Open Access Report 2012

Space and Naval Warfare Systems Command Systems Centre Pacific

Sounds produced from naval activities can be divided into seven categories: (1) Sonars and other active acoustic sources; (2) Explosive detonations; (3) Ship noise; (4) Aircrafts...
Read More

Harbour porpoises react to low levels of high frequency vessel noise.

Open Access Peer Reviewed Publication 2015

Scientific Reports

Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is...
Read More

Ambient Underwater Noise Levels at Norra Midsjöbanken during Construction of the Nord Stream Pipeline.

Open Access Journal Article 2012

Nord Stream

Norra Midsjöbanken is a Natura 2000 area situated approximately 50 km east of the southern tip of Öland island in the Swedish Exclusive Economic Zone (EEZ)....
Read More

The potential impact of 1-8 kHz active sonar on stocks of juvenile fish during sonar exercises.

Open Access Report 2005

Norwegian Defence Research Establishment

The mortality threshold for juvenile herring exposed to sonar signals is 180-190 dB (re 1μPa), and for other species even higher. This report analyses the potential...
Read More

Effects of exposure to intermittent and continuous 6–7 kHz sonar sweeps on harbor porpoise (Phocoena phocoena) hearing

Pay-walled Peer Reviewed Publication 2015

Journal of the Acoustical Society of America

Safety criteria for mid-frequency naval sonar sounds are needed to protect harbor porpoise hearing. A porpoise was exposed to sequences of one-second 6–7 kHz sonar down-sweeps,...
Read More

Effect of level, duration, and inter-pulse interval of 1-2 kHz sonar signal exposures on harbor porpoise hearing

Pay-walled Peer Reviewed Publication 2014

Journal of the Acoustical Society of America

Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria,...
Read More